NOTES BY:- jpwebdevelopers.in

Exception Handling

An exception is a problem(error) that arises during the execution of a program. A C++
exception is a response to an exceptional circumstance that arises while a program is running,
such as an attempt to divide by zero. Errors disrupt normal execution of a program so we
need exception handling to handle these errors.

Exception Handling in C++ is a process to handle runtime errors. We perform exception
handling so the normal flow of the application can be maintained even after runtime errors.

Advantage

It maintains the normal flow of the application. In such case, rest of the code is executed
even after exception.

Need of Exception Handling:

Here, are the reasons for using Exception Handling in C++:

1) Separation of Error Handling code from Normal Code: In traditional error handling
codes, there are always if else conditions to handle errors. These conditions and the code to
handle errors get mixed up with the normal flow. This makes the code less readable and
maintainable. With try catch blocks, the code for error handling becomes separate from the
normal flow. 2) Functions/Methods can handle any exceptions they choose: A function
can throw many exceptions, but may choose to handle some of them. The other exceptions
which are thrown, but not caught can be handled by caller. If the caller chooses not to catch
them, then the exceptions are handled by caller of the caller.

In C++, a function can specify the exceptions that it throws using the throw keyword. The
caller of this function must handle the exception in some way (either by specifying it again
or catching it)

3) Grouping of Error Types: In C++, both basic types and objects can be thrown as
exception. We can create a hierarchy of exception objects, group exceptions in namespaces
or classes, categorize them according to types.

C++ provides three keywords to support exception handling. Try: The try block
contain statements which may generate exceptions. Throw: When an exception occurs

in try block, it is thrown to the catch block using throw keyword.

Catch: The catch block defines the action to be taken, when an exception occur. The catch
block catching exceptions must immediately follow the try block that throws an exception.
A single try statement can have multiple catch statements.

The general form of try-catch block in C++:

try

{


https://jpwebdevelopers.in/jp-notes.php

NOTES BY:- jpwebdevelopers.in

//code
throw parameter;

b
catch(datatype arg)

{

//code to handle exception

}

Where data-type specifies the type of exception that catch block will handle if the try block
throws an exception then program control leaves the block and enters into the catch
statement of the catch block. If the type of object thrown matches the argument type in the
catch statement, then the catch block is executed for handling the exception.

Example of simple try/catch:
Divided-by-zero is a common form of exception generally occurred in arithmetic
based programs

#include<iostream.h>

main()

{

int n1,n2,result;
cout<<"\nEnter 1*' number:";

cin>>nl;

cout<<"\nEnter 2" number:";

cin>>n2;

try

{

if(n2==0)

throw n2; //Statement1 else
{

result =nl / n2;
cout<<"\nThe result is : "<<result; }

}

catch(int x)

{

cout<<"\nCan't divide by : "<<x; }
cout<<"\nEnd of program."; }
Output :

Enter 1st number : 45

Enter 2nd number : 0
Can't divide by :
0


https://jpwebdevelopers.in/jp-notes.php

NOTES BY:- jpwebdevelopers.in

End of program

Multiple catch statements

Catch block will receive value send by throw keyword in try block. A single try
statement can have multiple catch statements. Execution of particular catch block
depends on the type of exception thrown by the throw keyword. If throw keyword
send exception of integer type, catch block with integer parameter will get execute.
Example:

#include<iostream.h>

main()

{
int a=2;
try

{
if(a==1)

throw a; //throwing integerexception else if(a==2)
throw 'A’'; //throwing characterexception else if(a==3)
throw 4.5; //throwing floatexception

}

catch(int a)

{

cout<<"\nInteger exception caught.";

b
catch(char ch)

{

cout<<"\nCharacter exception caught.";

}
catch(double d)

{

cout<<"\nDouble exception caught.";

}

cout<<"\nEnd of program.";

b
Output:

Character exception caught End
of program


https://jpwebdevelopers.in/jp-notes.php

NOTES BY:- jpwebdevelopers.in

Catch All Exceptions

The above example will caught only three types of exceptions that are integer, character and
double. If an exception occur of long type, no catch block will get execute and abnormal
program termination will occur. To avoid this, we can use the catch statement with three dots
as parameter(...) so that it can handle all types of exceptions.

Example to catch all exceptions:

#include<iostream.h>

void main()

{

int a=1;
try

{
if(a==1)

throw a; /throwing integerexception
else if(a==2)

throw 'A’; //throwing characterexception
else if(a==3)

throw 4.5; //throwing floatexception

}

catch(...)

{

cout<<"\nException occur.";

}

cout<<"\nEnd of program.";

}

Output :

Exception occur

End of program

Rethrowing Exceptions

Rethrowing exception is possible, where we have an inner and outer try-catch
statements (Nested try-catch). An exception to be thrown from inner catch block to
outer catch block is called rethrowing exception.

Syntax of rethrowing exceptions

Example of rethrowing exceptions:
#include<iostream.h>


https://jpwebdevelopers.in/jp-notes.php

NOTES BY:- jpwebdevelopers.in

void main()

{

int a=1;
try

{

try

{

throw a;

}

catch(int x)
{
cout<<"\nException in inner try-catch block.";
throw x;

h
b

catch(int n)

{

cout<<"\nException in outer try-catch block";

}

cout<<"\nEnd of program";

b
Output:

Exception in inner try-catch block
Exception in outer try-catch block
End of program

Custom Exception

Custom Exception with class in C++:- we can throw an exception of user defined

class types. For throwing an exception of say demo class type within try block
we may write

throw demo();
Example 1: Program to implement exception handling with single class

#include <iostream>
using namespace std;


https://jpwebdevelopers.in/jp-notes.php

NOTES BY:- jpwebdevelopers.in

class demo {

35

int main()

{

try {
throw demo();

catch (demo d) {
cout << "Caught exception of demo class \n"';

}

C++ User-Defined Exceptions

The new exception can be defined by overriding and inheriting exception class
functionality.

C++ user-defined exception example

Let's see the simple example of a user-defined exception in which the std::exception class is
used to define the exception.

#include <iostream>

#include <exception>
using namespace std;

class MyException : public

exception


https://jpwebdevelopers.in/jp-notes.php

NOTES BY:- jpwebdevelopers.in

public:

const char * what() const throw()

{
return "Attempted to divide by

zero!\n"; }

}s

int main()

{
try

{

int x, y;

cout << "Ente
\n"; cin >>x >
if (y ==0)

{

MyExceptior

throw z;

else

cout <<"x /y="<<x/y <<endl;


https://jpwebdevelopers.in/jp-notes.php

NOTES BY:- jpwebdevelopers.in

catch(exception& e)

{

cout << e.what();

h
OUTPUT:-

Enter the two numbers :

18

8

Attempted to divide by zero!



https://jpwebdevelopers.in/jp-notes.php

