
 NOTES BY:- jpwebdevelopers.in

 Exception Handling

 An exception is a problem(error) that arises during the execution of a p rogram. A C++
 exception is a response to an exceptional circumstance that arises while a program is running,
 such as an attempt to divide by zero. Errors disrupt normal execution of a program so we
 need exception handling to handle these errors.

 Exception Handling in C++ is a process to handle runtime errors. We p erform exception
 handling so the normal flow of the application can be maintained even after runtime errors.

 Advantage

 It maintains the normal flow of the application. In such case, rest of the code is executed
 even after exception.

 Need of Exception Handling:
 Here, are the reasons for using Exception Handling in C++:
 1) Separation of Error Handling code from Normal Code: In traditional error handling
 codes, there are always if else conditions to handle errors. These conditions and the code to
 handle errors get mixed up with the normal flow. This makes the code less readable and
 maintainable. With try catch b locks, the code for error handling becomes separate from the
 normal flow. 2) Functions/Methods can handle any exceptions they choose: A function
 can throw many exceptions, but may choose to handle some of them. The other exceptions
 which are thrown, but not caught can be handled by caller. If the caller chooses not to catch
 them, then the exceptions are handled by caller of the caller.

 In C++, a function can specify the exceptions that it throws using the throw keyword. The
 caller of this function must handle the exception in some way (either by specifying it again
 or catching it)
 3) Grouping of Error Types : In C++, both basic types and objects can be thrown as
 exception. We can create a hierarchy of exception objects, group exceptions in namespaces
 or classes, categorize them according to types.

 C++ provides three keywords to support exception handling. Try: The try block
 contain statements which may generate exceptions. Throw: When an exception occurs
 in try block, it is thrown to the catch block using throw keyword.
 Catch: The catch block defines the action to be taken, when an exception occur. The catch
 block catching exceptions must immediately follow the try block that throws an exception.
 A single try statement can have multiple catch statements.
 The general form of try-catch block in C++:
 try
 {

https://jpwebdevelopers.in/jp-notes.php

 NOTES BY:- jpwebdevelopers.in

 //code
 throw parameter;
 }
 catch(datatype arg)
 {
 //code to handle exception
 }

 Where data-type specifies the type of exception that catch block will handle if the try block
 throws an exception then program control leaves the block and enters into the catch
 statement of the catch block. If the type of object thrown matches the argument type in the
 catch statement, then the catch block is executed for handling the exception.

 Example of simple try/catch:
 Divided-by-zero is a common form of exception generally occurred in arithmetic
 based programs
 #include<iostream.h>
 main()
 {
 int n1,n2,result;
 cout<<"\nEnter 1 st number:";
 cin>>n1;
 cout<<"\nEnter 2 nd number:";
 cin>>n2;
 try
 {
 if(n2==0)
 throw n2; //Statement1 else
 {
 result = n1 / n2;
 cout<<"\nThe result is : "<<result; }
 }
 catch(int x)
 {
 cout<<"\nCan't divide by : "<<x; }
 cout<<"\nEnd of program."; }
 Output :
 Enter 1st number : 45
 Enter 2nd number : 0
 Can't divide by :
 0

https://jpwebdevelopers.in/jp-notes.php

 NOTES BY:- jpwebdevelopers.in

 End of program
 Multiple catch statements
 Catch block will receive value send by throw keyword in try block. A single try
 statement can have multiple catch statements. Execution of particular catch block
 depends on the type of exception thrown by the throw keyword. If throw keyword
 send exception of integer type, catch block with integer parameter will get execute.
 Example:
 #include<iostream.h>
 main()
 {
 int a=2;
 try
 {
 if(a==1)
 throw a; //throwing integerexception else if(a==2)
 throw 'A'; //throwing characterexception else if(a==3)
 throw 4.5; //throwing floatexception
 }
 catch(int a)
 {
 cout<<"\nInteger exception caught.";
 }
 catch(char ch)
 {
 cout<<"\nCharacter exception caught.";
 }
 catch(double d)
 {
 cout<<"\nDouble exception caught.";
 }
 cout<<"\nEnd of program.";
 }
 Output:
 Character exception caught End
 of program

https://jpwebdevelopers.in/jp-notes.php

 NOTES BY:- jpwebdevelopers.in

 Catch All Exceptions
 The above example will caught only three types of exceptions that are integer, character and
 double. If an exception occur of long type, no catch block will get execute and abnormal
 program termination will occur. To avoid this, we can use the catch statement with three dots
 as parameter(...) so that it can handle all types of exceptions.
 Example to catch all exceptions:
 #include<iostream.h>
 void main()
 {
 int a=1;
 try
 {
 if(a==1)
 throw a; //throwing integerexception
 else if(a==2)
 throw 'A'; //throwing characterexception
 else if(a==3)
 throw 4.5; //throwing floatexception
 }
 catch(...)
 {
 cout<<"\nException occur.";
 }
 cout<<"\nEnd of program.";
 }

 Output :
 Exception occur
 End of program
 Rethrowing Exceptions
 Rethrowing exception is possible, where we have an inner and outer try-catch
 statements (Nested try-catch). An exception to be thrown from inner catch block to
 outer catch block is called rethrowing exception.

 Syntax of rethrowing exceptions
 Example of rethrowing exceptions:
 #include<iostream.h>

https://jpwebdevelopers.in/jp-notes.php

 NOTES BY:- jpwebdevelopers.in

 void main()
 {
 int a=1;
 try
 {
 try
 {
 throw a;
 }
 catch(int x)

 {
 cout<<"\nException in inner try-catch block.";
 throw x;
 }
 }

 catch(int n)
 {
 cout<<"\nException in outer try-catch block";
 }

 cout<<"\nEnd of program";
 }

 Output:
 Exception in inner try-catch block
 Exception in outer try-catch block
 End of program

 Custom Exception

 Custom Exception with class in C++:- we can throw an exception of user defined
 class types. For throwing an exception of say demo class type within try block
 we may write

 throw demo();

 Example 1: Program to implement exception handling with single class

 #include <iostream>
 using namespace std;

https://jpwebdevelopers.in/jp-notes.php

 NOTES BY:- jpwebdevelopers.in

 class demo {
 };

 int main()
 {

 try {
 throw demo();

 }

 catch (demo d) {
 cout << "Caught exception of demo class \n";

 }
 }

 C++ User-Defined Exceptions

 The new exception can be defined by overriding and inheriting exception class
 functionality.

 C++ user-defined exception example
 Let's see the simple example of a user-defined exception in which the std ::exception class is
 used to define the exception.

 #include <iostream>
 #include <exception>
 using namespace std;

 class MyException : public

 exception

https://jpwebdevelopers.in/jp-notes.php

 NOTES BY:- jpwebdevelopers.in

 {

 public :

 const char * what() const throw ()

 {

 return "Attempted to divide by

 zero!\n"; }

 };

 int main()

 {

 try

 {

 int x, y;

 cout << "Enter the two numbers :

 \n"; cin >> x >> y;

 if (y == 0)

 {

 MyException z;

 throw z;

 }

 else

 {

 cout << "x / y = " << x/y << endl;

 }

 }

https://jpwebdevelopers.in/jp-notes.php

 NOTES BY:- jpwebdevelopers.in

 catch (exception& e)

 {
 cout << e.what();

 }

 }

 OUTPUT:-

https://jpwebdevelopers.in/jp-notes.php

